Workbench(tm) User Manual

TUTORIAL LESSONS

Our lesson plan in this section will cover the more common uses of Workbench. Each lesson contains a task sample, expected results, and points to observe. When you need more information on a particular topic, refer to the command reference and the example sections. These lessons will cover:

Lesson 1 - Getting started

1) Make sure Workbench works

2) Concept of "process loop"

3) Syntax

Lesson 2 - File record prints

1) Various prints available

2) Request print at any time

3) Alternate "prints"

Lesson 3 - Modifying records

1) Fields defined

2) Left to right moves

3) Right to left moves

4) Short to longer fields

5) Long to shorter fields

6) Edit expand/contract

7) Propagating moves

Lesson 4 - File modification

1) File coordination from another file

2) Numeric conversion

Lesson 5 - File synchronized

1) Automatic coordination

2) Concept of delete/not active

3) Workbench internals chart

Lesson 6 - File scanning

1) Quick scan & print

2) Location setting

3) Moves based on location pointer

Lesson 7 - Library processing

1) Directory list

2) Member name modification

3) Output members

Lesson 8 - Xref source code

1) Special purpose report

2) Can exclude names

Lesson 9 - File compares

1) Single record concept

2) Can selectively exclude fields

Lesson 10 - Sync compares

1) What "not available" means

Lesson 11 - Library compares

1) Within members coordinated

2) Blank out sequence numbers

Lesson 12 - Special formatting

1) Using workarea

Lesson 1, Getting started

Logon to your system, create or copy from SYSTECH.V6TUTOR.CNTL(LESSON01) and submit the follow​ing JCL.

Note: Changes might be required for job statement and datasets due to your data center's standards.

//LESSON1 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC BENCH

//A DD DSN=SYSTECH.V6TUTOR.DATA(LSN001),DISP=SHR

//SYSIN DD *

* WORKBENCH COMMANDS *

LOOP READ A. *READ NEXT RECORD

 PRINT A. *PRINT RECORD

 GOTO LOOP. *LOOP FOR MORE

/*

//

Purpose:

This is an everyday task to list a data file. The purpose of this demonstration is to verify the Workbench proc and confirm that the tutorial samples are available. Route the output to a printer before you proceed with this tutorial.

Expected results:

The report just printed has several parts:

a)
JES log for start/end and warning messages

b)
Execution JCL showing the expanded Workbench Proc

c)
Step completion information

d)
BENCHR01 COMMAND EDIT LIST showing command edits

e)
BENCHR02 FILE PRINT LIST showing the records on the file

f)
BENCHR08 STATISTICS LIST showing Workbench file counts

Throughout these lessons we refer to reports as R01, R02, R03...etc. A complete list of reports Work​bench produces is described in the introduction section of this manual.

Points to observe:

In this sample, the task is to print all the records on the given file. Workbench knows which file to open by the ddname given on the READ and PRINT statement. Any ddname up to 8 characters may be used except those used in the Proc or the reserved ddname WORKAREA.

You will also note that the sample forces a "process loop" to repeat the commands. Workbench tests for end of file each time a read is made. When all the input files for a given task are at end, the task will termi​nate and report the statistics of the run.

Workbench has separate reports. This gives you the ability to efficiently browse the output queue for a Workbench run by "skipping" through sysout files. Likewise, you can send different reports to other sysout classes such as record prints to microfiche and the run stats to standard stock paper (minor points but quite useful).

A word about syntax rules:

Commands are entered via SYSIN DD statement. They may use column 1 thru 71. A label for process branching is defined by starting the 8 character name in column 1. An "*" in column 1 indicates comment card. Completely blank cards are allowed to enhance readability.

Only one command verb is allowed per input card (the only exceptions are SYNC, CALL, and ENTRY which may span multiple cards). Any values beyond the required syntax will be treated as comments.

THIS IS IMPORTANT. Do not code multiple verbs on the same line.

The following example of an IF verb and a GOTO verb coded on the same line will fail to produce the intended results. The GOTO will be treated as comments.

 LOOP READ TESTFILE *INCORRECT SAMPLE

 IF DATE = '061285' GOTO LOOP.

 LOOP READ TESTFILE *CORRECT SAMPLE

 IF DATE = '061285'

 GOTO LOOP.

Lesson 2, File prints

Submit the following JCL from SYSTECH.V6TUTOR.CNTL(LESSON02).

//LESSON2 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC BENCH

//FILEIN DD DSN=SYSTECH.V6TUTOR.DATA(LSN002),DISP=SHR

//SYSIN DD *

* PRINT & DUMP RECORDS *

LIMIT DEFINES C'3' *RECORD COUNT

LOOP READ FILEIN. *READ RECORD

 IF COUNTIN OF FILEIN > LIMIT *IF RECORD LIMIT REACHED

 GOTO EOJ. * YES-SHUT DOWN TASK

 PRINT FILEIN. *PRINT RECORD

 DUMPV FILEIN. *VERT DUMP REC

 DUMPH FILEIN. *HORTIZONTAL DUMP REC

 GOTO LOOP. *GET MORE RECORDS

//

Purpose:

This sample will read up to 3 input records. Each record will be printed and dumped to illustrate the various formatted reports.

Expected results:

The report printed has several parts:

a)
JES log

b)
Execution JCL

c)
Step completion information

d)
BENCHR01 COMMAND EDIT LIST

e)
BENCHR02 PRINT LIST

f)
BENCHR03 VERTICAL DUMP LIST

g)
BENCHR04 HORIZONTAL DUMP LIST

h)
BENCHR08 STATISTICS LIST

The stats report should show that the input file was still in process as indicated by the "P" value under the EOF title. A count of the number of records sent to each report type is also given.

Points to observe:

File prints can be obtained in several different formats depending on the verb used. Since each of these verbs has its own sysout dataset, each format prints separately.

The formats are:

PRINT

displays character data (100 bytes per line).

DUMPV
same as above except that hex representation appears

below each character.

DUMPH
character and hex in core dump format.

For all formats, dataset name, creation date, and volume number appear on every page.

Note: There is another alternative for displaying a record or a message. Simply define your output file as sysout. You can use carriage control by setting aside position 1 of your output print line and using RECFM=FBA on the JCL. Now you have available up to 99 display reports for special summaries, messages, or data prints without the heading information.

Lesson 3, Modifying records

Submit the following JCL from SYSTECH.V6TUTOR.CNTL(LESSON03).

//LESSON3 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC BENCH

//FILEIN DD DSN=SYSTECH.V6TUTOR.DATA(LSN003),DISP=SHR

//FILEOUT DD DSN=&&TEMP,DISP=(NEW,PASS),UNIT=SYSDA,

// SPACE=(TRK,(1,1)),DCB=(LRECL=150,RECFM=FB,BLKSIZE=6000)

//SYSIN DD *

TYPE DEFINES (F=FILEIN,P=1,L=3) *RECORD ID

TYPEDIT DEFINES (F=FILEIN,P=1,L=2) *EDIT RECORD

DATE1 DEFINES (F=FILEIN,P=4,L=6) *MOVE LEFT

DATE DEFINES (F=FILEIN,P=5,L=6) *ACTIVITY DATE

CLEAR DEFINES (F-FILEIN,P=10,L=1) *CLEAR AREA

DESC DEFINES (F=FILEIN,P=30,L=20) *SHORT MOVE FILL BLANKS

MONTH DEFINES (F=FILEIN,P=51,L=2) *TRUNCATED MOVE

PROP1 DEFINES (F=FILEIN,P=66,L=15) *HIGH VALUE FILLER

PROP2 DEFINES (F=FILEIN,P=67,L=14) *OVERLAPPED AREA

DATEWORK DEFINES (F=WORKAREA,P=1,L=6) *MOVE RIGHT

NEWDATE DEFINES '061292' *NEW DATE VALUE

LOOP READ FILEIN. *READ RECORD

 IF TYPE = '687' *IF DIRECT BILLING RECORD

 PRINT FILEIN * YES-PRINT BEFORE IMAGE

 MOVE NEWDATE TO DATE * 1) MODIFY EQUAL SIZES

 PRINT FILEIN *

 MOVE NEWDATE TO MONTH * 2) TRUNCATED VALUE

 PRINT FILEIN *

 MOVE DATE TO DATE1 * 3) OVERLAPPED LEFT MOVE

 MOVE ' ' TO CLEAR * CLEAR EXCESS BYTE

 PRINT FILEIN *

 MOVE DATE1 TO DATEWORK * 4) OVERLAPPED RIGHT MOVE

 MOVE ' ' TO DATE1 * CLEAR OLD AREA

 MOVE DATEWORK TO DATE * MOVE FROM SCRATCH PAD

 PRINT FILEIN *

 MOVE 'GOLD OPTION' TO DESC * 5) BLANK FILL DESCRIPTION

 PRINT FILEIN * PRINT AFTER IMAGE

 EDIT '87' TO TYPE * 6) EDIT 687 TO BE 87

 PRINT FILEIN * PRINT AFTER IMAGE

 EDIT '6879212' TO TYPEDIT. * EDIT 87 TO BE 6879212

 PRINT FILEIN. *

 MOVE C'9' TO PROP1. * 7) SET FIRST BYTE TO 9

 MOVE PROP1 TO PROP2. *PROPAGATE 9

 WRITE FILEOUT FROM FILEIN. *OUTPUT MODIFIED RECORD

 PRINT FILEIN. *

 GOTO LOOP. *LOOP FOR MORE

Purpose:

The above sample illustrates the various MOVE situations you will encounter.

Expected results:
The report printed has several parts. The print list report should contain several before/after images of the record as it is modified. You will find this technique useful.

a)
JES log

b)
Execution JCL

c)
Step completion information

d)
BENCHR01 COMMAND EDIT LIST

e)
BENCHR02 PRINT LIST

f)
BENCHR08 STATISTICS LIST

Points to observe:

To modify the data on a record you must read in the records, locate the record you wish to change, and then issue a MOVE verb to the location that requires modification (see comment 1 on preceding page example). A larger field to a smaller field move will cause truncation (see comment 2). A smaller to a larger field will cause the remaining bytes to be blank filled (see comment 5).

The right to left data move for overlapping fields (see comment 3) works as expected, but the left to right requires a temporary move to a holding area. We used the 4K scratch pad for this purpose (see comment 4). Once the data is moved we have cleared the original area and then moved the data into the new loca​tion. As you may know COBOL does not allow overlapping field moves.

Field "edits" can be done with the EDIT verb. If receiving field is smaller than sending, the field is expand​ed shifting to the right. If receiving field is larger than sending field, the record is shifted to the left until a blank is found in the record (see comment 6).

You can propagate a given value throughout an area by moving a single value to the beginning of the field and then requesting a move from left to right offset by one byte (see comment 7). Because the move is done one byte at a time, the given value will be carried forward until the end of the field. The maximum field size for each MOVE is 32760 bytes.

Lesson 4, File modification from another file

Submit the following JCL from SYSTECH.V6TUTOR.CNTL(LESSON04).

//LESSON4 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC BENCH

//PROD DD DSN=SYSTECH.V6TUTOR.DATA(LSN004A),DISP=SHR

//PATCHES DD DSN=SYSTECH.V6TUTOR.DATA(LSN004B),DISP=SHR

//FILEOUT DD DSN=&&TEMP,DISP=(NEW,PASS),UNIT=SYSDA,

// SPACE=(TRK,(1,1)),DCB=(LRECL=150,RECFM=FB,BLKSIZE=6000)

//SYSIN DD *

* MODIFY RECORDS FROM PATCH FILE *

KEY1 DEFINES (F=PROD,P=5,L=3) *RECORD ID

KEY2 DEFINES (F=PATCHES,P=1,L=3) *RECORD ID

NEWVALUE DEFINES (F=PATCHES,P=30,L=6) *NEW DATA

NEWDEC DEFINES (F=PATCHES,P=40,L=6,T=C) *NEW DIGIT VALUE

OLDVALUE DEFINES (F=PROD,P=48,L=6) *OLD DATA

OLDBIN DEFINES (F=PROD,P=58,L=2,T=X) *OLD BINARY

 READ PROD. *READ INIT

 READ PATCHES. *READ INIT

LOOP IF KEY1 = KEY2 *IF PROD REC = PATCH REC

 DUMP PROD * Y-PRINT BEFORE IMAGE

 MOVE NEWVALUE TO OLDVALUE * Y-REPLACE VALUE

 CVTBIN NEWDEC TO OLDBIN * Y-CONVERT & REPLACE

 WRITE FILEOUT FROM PROD * Y-OUTPUT REC

 DUMP PROD * Y-PRINT THE UPDATE REC

 READ PATCHES * Y-READ NEW PATCH

 READ PROD * Y-READ NEW PROD

 GOTO LOOP. * Y-LOOP FOR TEST

 IF KEY1 > KEY2 *IF PROD REC > PATCH REC

 READ PATCHES * Y-READ NEW PATCH

 GOTO LOOP. * Y-LOOP FOR TEST

 IF KEY1 < KEY2 *IF PROD REC < PATCH REC

 WRITE FILEOUT FROM PROD * Y-OUTPUT PROD REC

 READ PROD * Y-READ NEW PROD

 GOTO LOOP. * Y-LOOP FOR TEST

/*

//

Purpose:

This is a commonly used feature. Data that is on one file is to be transferred to the correct record on the production file. To accomplish this we must match the first file to the second file. Files are assumed to be in ascending order.

Expected results:

The report printed has several parts. Changes to the file get recorded as before and after image print.

a)
JES log

b)
Execution JCL

c)
Step completion information

d)
BENCHR01 COMMAND EDIT LIST

e)
BENCHR02 PRINT LIST

f)
BENCHR08 STATISTICS LIST

Points to observe:

This lesson shows how to match two files in order to modify one of the files. The PROD file contains the original data which must be modified from data contained on the PATCH file.

We are using a manual technique to test for high and low conditions based on some file sort order. When the keys match we will move data from one file to another. Reads are done depending on the need for one file to catch up to the other file.

"Data is data" should be the title of this lesson. If the information you need is stored on the machine, Workbench and your text editor can probably combine and reformat it for your needs. This is one of many instances where Workbench is the quickest way to solve a problem.

Lesson 5, File synchronization

Submit the following JCL from SYSTECH.V6TUTOR.CNTL(LESSON05).

//LESSON5 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC BENCH

//PROD DD DSN=SYSTECH.V6TUTOR.DATA(LSN005A),DISP=SHR

//PATCHES DD DSN=SYSTECH.V6TUTOR.DATA(LSN005B),DISP=SHR

//FILEOUT DD DSN=&&TEMP,DISP=(NEW,PASS),UNIT=SYSDA,

// SPACE=(TRK,(1,1)),DCB=(LRECL=150,RECFM=FB,BLKSIZE=6000)

//SYSIN DD *

* MODIFY RECORDS FROM PATCH FILE *

KEY1 DEFINES (F=PROD,P=5,L=3) *RECORD ID

KEY2 DEFINES (F=PATCHES,P=1,L=3) *RECORD ID

NEWVALUE DEFINES (F=PATCHES,P=30,L=6) *NEW DATA

NEWDEC DEFINES (F=PATCHES,P=40,L=6,T=C) *NEW DIGIT VALUE

OLDVALUE DEFINES (F=PROD,P=48,L=6) *OLD DATA

OLDBIN DEFINES (F=PROD,P=58,L=2,T=X) *OLD BINARY

LOOP SYNC KEY1, KEY2. *AUTOMATIC READS

 IF KEY1 = KEY2 *IF PROD REC = PATCH REC

 DUMP PROD * Y-PRINT BEFORE IMAGE

 MOVE NEWVALUE TO OLDVALUE * Y-REPLACE VALUE

 CVTBIN NEWDEC TO OLDBIN * Y-CONVERT & REPLACE

 DUMP PROD. * Y-PRINT AFTER IMAGE

 WRITE FILEOUT FROM PROD. *OUTPUT PROD RECORD

 GOTO LOOP. *LOOP FOR MORE

Purpose:

This sample demonstrates the automatic coordinating read facility of Workbench. In function, it is identi​cal to Lesson 4.

Expected results:

The report printed has several parts including before and after print images.

a)
BENCHR01 COMMAND EDIT LIST

b)
BENCHR02 PRINT LIST

c)
BENCHR08 STATISTICS LIST

Points to observe:

This sample is a short cut to match multiple files. The restrictions are the same as the manual technique we saw in lesson 4: the files must be in ascending order and a matching key must be given. As we ex​plain SYNC please refer to the internal chart on the following page.

SYNC, when issued for the first time, will read all files and store the first record in their staging areas (see items a & c). A search is then made in each staging area for the lowest key value. When the lowest key is found, a second scan is made to copy the matching key's records into the active areas (see items b & d). Workbench will then mark in the control area's RECORDSW to be "P" indicating "present" (see item e) for those records that are available. Those records that are not available are marked as an "E" indicating "empty" in their RECORDSW.

You are assured upon return from a SYNC request that at least one record is present. Possibly there is more than one, but they all have the same key.

There is one more feature of Workbench to note. Every verb in Workbench checks before executing to see if the record specified in the operation is available. This means that a PRINT or a WRITE request will be bypassed for records not available. Should the operation be an IF statement, the IF statement and its related IF group will be skipped. This means your commands will be more compact and will not require special bypass tests.

The verb DELETE also causes the same "empty" situation as the SYNC. You can keep your code brief by DELETEing a record, and all subsequent commands which try to use that record will be skipped. The record indicator is reset when another READ or SYNC is requested.

WORKBENCH LOGICAL VIEW

The following chart is a logical overview of Workbench's internals. Each section is identified and de​scribed in the following page.

 INPUT1 INPUT2 INPUT 99

 _________ _________

Staging =====> | (a) | | (c) |

 |_________| |_________|

 ___ _________ ___ _________

Active ==> |(e)|| (b) | |ctl|| (d) |

 |___||_________| |___||_________|..... 99 files

(f) (g) (h)

 _________ _____________ _______________

| command | | Workbench | | |

| list | | Processor | | 4k WORKAREA |

|---------| |-------------| | |

| | | | |_______________|

| read | | edits, I/O | (i)

| if = 1 | | handing | _______________

| print| | cmd routines| | |

| move | | | | Literal area |

| print| |_____________| |_______________|

| write |

| goto |

|_________| REPORTS R01 CMD EDITS

 R02 PRINT

 (j) (k) (l) (m) R03 DUMPV

 R04 DUMPH

 ...OUTPUT1 OUTPUT2 OUTPUT nn R05 COMPARE

 R07 XREF

 R08 STATS

Description:

(a)
Record staging area for SYNC requests. One staging area for each input file.
Staging area is not accessible to task commands. Staging area size is equal to the
record size.

(b)
Record active area. One active area for each input file is referenced by the file's
ddname. Active area size is equal to the record size. All process verbs use the
active areas. All data modifica​tions are done in the active area.

(c)
Additional input file staging areas.

(d)
Additional input file active areas.

(e)
Control area for the input file ddname containing record counts, record status, `
current PDS member name, and scan location pointers. All values are accessible
using the "IF" statement command. Member name may be modified for renaming,
merging, etc. by use of the "MOVE" command. See IF command section 3 for a
complete list of control fields and their values.

(f)
Command execute table which stores command statements in executable form.
The command table will request space depending on the number of source
statements. The number of com​mands are unlimited other than task region size.

(g)
Workbench processor which contains the editor, input/output module, and
command routines.

(h)
WORKAREA is a special ddname which reserves a 4K scratch pad area initialized
as hex zeros. WORKAREA is activated when referenced by a "DEFINES" or
when referenced by a processing command. Should a larger or smaller size be
desired, you can set up an input file and read one record. This technique is
especially useful in building large records or comparing portions of records.

(i)
Literal pool is a 4K area automatically built whenever a literal is used in the
command statements.

(j)
The output file is referenced by ddname. Output records are built in input record
ddname-in". Output records are not accessible. An output file's characteristics are
defined by the JCL DCB. There​fore, regardless of the size of the input record, the
output file will only output the size specified by the JCL.

(k)
Additional output files. Extra record counts, special messages, as well as the
normal file splits are common uses of the output ddnames.

(l)
Additional output files.

(m)
Reports as requested by the user.

Lesson 6, File scanning

Part 1 of 3

Submit the following JCL from SYSTECH.V6TUTOR.CNTL(LESSON6A).

//LESSON6 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC BENCH

//PROD DD DSN=SYSTECH.V3TUTOR.DATA(LSN006),DISP=SHR

//SYSIN DD *

* SCANNING FOR A DATA SET NAME *

LOOP READ PROD. *READ FILE

 SCAN PROD FOR 'NEWYORK'. *SCAN & PRINT FILE

 GOTO LOOP. *LOOP FOR MORE

Purpose:

This is a quick way to scan a file for a data value. The verb SCAN combines a scan and print function for each record containing the value given.

Expected results:

The report printed has several parts.

a)
JES log

b)
Execution JCL

c)
Step completion information

d)
BENCHR01 COMMAND EDIT LIST

e)
BENCHR02 PRINT LIST shows scan hits

f)
BENCHR08 STATISTICS LIST

Part 2 of 3

This sample gets the same results as above. Try it instead.

LOOP READ PROD. *READ FILE

 SCANTEST PROD FOR 'NEWYORK'. *SCAN FOR VALUE

 IF SCANHIT OF PROD = 'Y' *IF FOUND

 PRINT PROD. * Y-PRINT REC

 GOTO LOOP. *LOOP FOR MORE

Part 3 OF 3

Submit the following JCL from SYSTECH.V6TUTOR.CNTL(LESSON6B).

//LESSON6 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC BENCH

//PROD DD DSN=SYSTECH.V6TUTOR.DATA,DISP=SHR

//FILEOUT DD DSN=&&TEMP,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(TRK,(1,1)),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=8000)

//SYSIN DD *

* FILE SCAN/REPLACE *

FLD01 DEFINES (F=PROD,P=LOC,L=7) *VARIABLE LOCATION

LOOP READ PROD. *READ FILE

 SCANTEST PROD FOR 'NEWYORK' *SCAN FOR VALUE

 IF SCANHIT OF PROD = 'Y' *IF FOUND

 PRINT PROD * Y-PRINT BEFORE IMAGE

 MOVE 'CHICAGO' TO FLD01 * Y-REPLACE VALUE

 PRINT PROD. * Y-PRINT REPLACED REC

 WRITE FILEOUT FROM PROD. *OUTPUT RECORD

 GOTO LOOP. *LOOP FOR MORE

Expected results:

The report prints have several parts.

a)
JES log

b)
Execution JCL

c)
Step completion information

d)
BENCHR01 COMMAND EDIT LIST

e)
BENCHR02 PRINT LIST

f)
BENCHR08 STATISTICS LIST

Points to observe:

These three samples show how to do quick scans and controlled scans. The quick scan simply prints the record containing the scanned value on the PRINT report R02.

The controlled scan searches the record and when the value is found, a "hit" indicator is set on. In addi​tion to setting the indicator, a location pointer value is stored. This location pointer may be used in a MOVE or IF statement. See the DEFINES verb in the reference section for more information.

Lesson 7, Library processing

Part 1 of 2

Submit the following JCL from SYSTECH.V6TUTOR.CNTL(LESSON7A).

//LESSON7 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC BENCH

//PROD DD DSN=SYSTECH.V6TUTOR.CNTL,DISP=SHR

//SYSIN DD *

* SCANNING FOR A DATA SET NAME *

LOOP READPDS PROD FOR LESSON**. *READ ALL LESSON MEMBERS

 SCAN PROD FOR 'V6TUTOR.CNTL' *SCAN & PRINT FILE

 GOTO LOOP. *LOOP FOR MORE

/*

//

Purpose:

This is a quick scan of a library. Proclibs and control card libraries are commonly scanned files. Work​bench does not lock out or slow down other tasks using the files.

Expected results:

The report printed has several parts.

a)
JES log

b)
Execution JCL

c)
Step completion information

d)
BENCHR01 COMMAND EDIT LIST

e)
BENCHR02 PRINT LIST

f)
BENCHR08 STATISTICS LIST

Points to observe:

The print report will display the record found, the record number, and member name containing the record.

Part 2 of 2

Submit the following JCL from SYSTECH.V6TUTOR.CNTL(LESSON7B).

//LESSON7 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC BENCH

//PROD DD DSN=SYSTECH.V6TUTOR.CNTL,DISP=SHR

//LIBOUT DD DSN=&&TEMP,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(TRK,(1,1,5)),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=6000,DSORG=PO)

//SYSIN DD *

* SCANNING FOR A DATA SET NAME *

NEW DEFINES 'LESSON99' *NEW NAME

UNIT DEFINES (F=PROD,P=LOC,L=5) *UNIT LOCATION

LOOP READPDS PROD FOR LESSON** *READ ALL LESSON MEMBERS

 IF MEMNAME OF PROD = 'LESSONXX' *IF XX MEMBER

 MOVE NEW TO MEMNAME OF PROD. * Y-REPLACE NAME

 SCANTEST PROD FOR 'SYSDA' *SCAN FOR SYSDA

 IF SCANHIT OF PROD = 'Y' *IF FOUND

 PRINT PROD * Y-PRINT BEFORE IMAGE

 EDIT 'TSTAU2' TO UNIT * Y-REPLACE VALUE

 PRINT PROD. * Y-PRINT REPLACED REC

 WRITEPDS LIBOUT FROM PROD. *OUTPUT MEMBER RECORD

 GOTO LOOP. *LOOP FOR MORE

Purpose:

This sample shows the scan/replace ability by using the SCANTEST verb and the EDIT verb with LOC defined as the destination of the moved data.

Expected results:

The report printed has several parts.

a)
JES log

b)
Execution JCL

c)
Step completion information

d)
BENCHR01 COMMAND EDIT LIST

e)
BENCHR02 PRINT LIST

f)
BENCHR08 STATISTICS LIST

Points to observe:

This sample uses the scan location pointer to replace data. To replace data of unequal sizes, refer to lesson 3.

When the READPDS verb is issued, Workbench builds its own directory list based on the FOR clause specified. Members are started and processed from this list until all records on all the members have been processed.

You can output these member records to another PDS file by requesting a WRITEPDS. The member name currently being processed on the input file will be the output's member name. You can rename the member name by resetting (before each WRITEPDS) the input's MEMNAME control area. This new value might come from a literal or possibly from the data record itself.

For more information see the reference section WRITEPDS and related samples.

Lesson 8, Xref source code

Submit the following JCL from SYSTECH.V6TUTOR.CNTL(LESSON08).

//LESSON8 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC BENCH

//PROD DD DSN=SYSTECH.V6TUTOR.CTLCARD1,DISP=SHR

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5,5))

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5,5))

//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(5,5))

//SYSIN DD *

* SCANNING FOR A DATA SET NAME *

LOOP READPDS PROD FOR LSN008**. *READ ALL LESSON8 MEMBERS

 XREF PROD. *XREF DATA NAMES

 GOTO LOOP. *LOOP FOR MORE

/*

//

Purpose:

This sample demonstrates the data name cross reference facility. All names containing a dash (-) or underscore (_) will be considered a data name.

Expected results:

The report printed has several parts.

a)
BENCHR01 COMMAND EDIT LIST

b)
BENCHR07 XREF LIST

c)
BENCHR08 STATISTICS LIST

Points to observe:

The XREF verb releases the given record to the cross reference facility each time it is requested. When the job has reached end of file, the cross reference facility sorts and reports the data names in alphabetic order.

The XREF verb is like other verbs in that you can exclude records, members, and even modify data prior to releasing the record to the cross reference facility.

Lesson 9, File compares

Submit the following JCL from SYSTECH.V6TUTOR.CNTL(LESSON09).

//LESSON9 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC BENCH

//PROD DD DSN=SYSTECH.V6TUTOR.DATA(LSN009A),DISP=SHR

//TEST DD DSN=SYSTECH.V6TUTOR.DATA(LSN009B),DISP=SHR

//SYSIN DD *

* FILE COMPARE *

LOOP READ PROD. *READ PROD FILE

 READ TEST. *READ TEST FILE

 PRINT PROD. *DISPLAY FILE

 PRINT TEST. *DISPLAY FILE

 MOVE ' ' TO (F=PROD,P=41,L=6). *EXCLUDE DATE FIELD

 MOVE ' ' TO (F=TEST,P=41,L=6). *EXCLUDE DATE FIELD

 COMPARE PROD TO TEST. *COMPARE FILES

 GOTO LOOP. *GET MORE

Purpose:

This sample illustrates the COMPARE verb with field exclusion.

Expected results:

The report printed has several parts.

a)
BENCHR01 COMMAND EDIT LIST

b)
BENCHR05 COMPARE LIST

c)
BENCHR08 STATISTICS LIST

Points to observe:

The COMPARE facility receives two records and compares byte for byte between the records. Those records that are different will print in a vertical dump format. Under the second record, an "=" will print for bytes that are equal. An "*" will print for bytes that are different.

You may exclude certain fields from your compare by simply blanking out the area in both records. This is a most useful technique to get rid of unimportant differences such as dates, sequence numbers, data base location keys, etc.

Lesson 10, Synchronized file compares

Submit the following JCL from SYSTECH.V6TUTOR.CNTL(LESSON10).

//LESSON10 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC BENCH

//PROD DD DSN=SYSTECH.V6TUTOR.DATA(LSN010A),DISP=SHR

//TEST DD DSN=SYSTECH.V6TUTOR.DATA(LSN010B),DISP=SHR

//SYSIN DD *

* FILE COMPARE SYNC *

KEY1 DEFINES (F=PROD,P=5,L=3) *KEY

KEY2 DEFINES (F=TEST,P=5,L=3) *KEY

LOOP SYNC KEY1 KEY2. *READ PROD FILE

 PRINT PROD. *LIST FILE

 PRINT TEST. *LIST FILE

 COMPARE PROD TO TEST. *COMPARE FILES

 GOTO LOOP. *GET MORE

/*

//

Purpose:

This sample shows how file matching, as illustrated in lesson 4, can be applied to file compares.

Expected results:

The report printed has several parts.

a)
BENCHR01 COMMAND EDIT LIST

b)
BENCHR02 PRINT LIST

c)
BENCHR05 COMPARE LIST

d)
BENCHR08 STATISTICS LIST

Points to observe:

The SYNC verb keeps the record sets together to show those records added and deleted from the file. The message "FILE NOT AVAILABLE OR IS EOF" indicates such gaps. Changes print with the highlighted differences.

Lesson 11, Library compares

Submit the following JCL from SYSTECH.V6TUTOR.CNTL(LESSON11).

//LESSON11 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC BENCH

//before DD DSN=SYSTECH.V6TUTOR.CTLCARD1,DISP=SHR

//after DD DSN=SYSTECH.V6TUTOR.CTLCARD2,DISP=SHR

//SYSIN DD *

* comprehensive library compare *

hold DEFINES C'AAAAAAAA' *hold member

high DEFINES C'ZZZZZZZZ' *high member

seqb DEFINES (F=before,P=72,L=9) *seq num

seqa DEFINES (F=after,P=72,L=9) *seq num

eof DEFINES 'Y' *eof ind

empty DEFINES 'E' *empty ind

present DEFINES 'P' *present ind

holdind DEFINES 'Y' *file ind

 READPDS before FOR LSN011** *init reads

 READPDS after FOR LSN011** *

loop IF RECORDSW OF before = eof *if eof set high

 MOVE high TO MEMNAME OF before. *

 IF RECORDSW OF after = eof *

 MOVE high TO MEMNAME OF after. *

 IF MEMNAME OF before = MEMNAME OF after

 IF MEMNAME OF before = hold *

 MOVE ' ' TO seqb *if same member

 MOVE ' ' TO seqa * then clear seq

 LOADSRC before after * load and read

 READPDS before FOR LSN011** * next records

 READPDS after FOR LSN011** *

 GOTO loop. *

 IF MEMNAME OF before > hold *if member done

 IF MEMNAME OF after > hold * then request

 COMPSRC * a compare

 GOTO reset. * and reset hold

 IF MEMNAME OF before = hold *if before not

 GOTO loadb. * done finish it

 IF MEMNAME OF after = hold *if after not

 GOTO loada. * done finish it

 GOTO loop.

 *

loadb MOVE RECORDSW OF after TO holdind *save current ind

loadbl IF MEMNAME OF before = hold *if finishing member

 MOVE empty TO RECORDSW OF after * set other file empty

 MOVE ' ' TO seqb * clear seq number

 LOADSRC before after * load record

 MOVE holdind TO RECORDSW OF after * reset ind

 READPDS before FOR LSN011** * read another

 GOTO loadbl. * loop until done

 COMPSRC. *request compare

 GOTO reset. *

loada MOVE RECORDSW OF before TO holdind *save current ind

loadal IF MEMNAME OF after = hold *if finishing member

 MOVE empty TO RECORDSW OF before * set other file empty

 MOVE ' ' TO seqa * clear seq number

 LOADSRC before after * load record

 MOVE holdind TO RECORDSW OF before * reset ind

 READPDS after FOR LSN011** * read another rec

 GOTO loada. * loop until done

 COMPSRC. *request compare

 GOTO reset. *

reset IF MEMNAME OF before = MEMNAME OF after

 MOVE MEMNAME OF before TO hold.

 IF MEMNAME OF before < MEMNAME OF after

 MOVE MEMNAME OF before TO hold.

 IF MEMNAME OF before > MEMNAME OF after

 MOVE MEMNAME OF after TO hold.

 GOTO loop.

Purpose:

This sample compares library members that have identical names.

Expected results:

a)
BENCHR01 COMMAND EDIT LIST showing commands used

b)
BENCHR06 SOURCE CODE COMPARE showing differences

c)
BENCHR08 STATISTICS LIST showing counts

Points to observe:

This sample will re-coordinate records between members. You will find it useful to exclude sequence numbers and possibly use a scan/replace to blank out known changes such as data name prefixes, test vs. prod disk packs...etc.

Lesson 12, Formatting special requests

Submit the following JCL from SYSTECH.V6TUTOR.CNTL(LESSON12).

//LESSON12 JOB (12345,12345),'name',CLASS=A,MSGCLASS=A,TIME=(,5)

//STEP001 EXEC BENCH

//FILEIN DD DSN=SYSTECH.V6TUTOR.CNTL,DISP=SHR

//DISPLAY DD SYSOUT=A,DCB=(LRECL=88,RECFM=FBA,BLKSIZE=88)

//SYSIN DD *

* SEND JCL TO PRINTER WITH PAGE EJECTS

PRTREC DEFINES (FILE=WORKAREA,POS=2,LEN=80) *JCL STATEMENT

PRTCC DEFINES (FILE=WORKAREA,POS=1,LEN=1) *CARRIAGE CONTROL

PRTSEQ DEFINES (FILE=WORKAREA,POS=73,LEN=8) *MEMBER NAME

PRTMEM DEFINES (FILE=WORKAREA,POS=81,LEN=8) *MEMBER NAME

MEMWORK DEFINES (FILE=WORKAREA,POS=200,LEN=8) *HOLD MEMBER NAME

JCLREC DEFINES (FILE=FILEIN,POS=1,LEN=80) *SOURCE JCL STMT

LOOP READPDS FILEIN FOR LESSON**. *READ MEMBERS

 IF MEMNAME OF FILEIN = 'LESSONXX' *IF LESSONXX

 GOTO LOOP. *YES-SKIP MEMBER

 MOVE ' ' TO PRTCC. *SET CC= ONE LINE

 IF MEMNAME OF FILEIN NOT = MEMWORK *IF NEW MEMBER

 MOVE MEMNAME OF FILEIN TO MEMWORK * Y-RESET MEM HOLD

 MOVE '1' TO PRTCC. * -SET EJECT

 MOVE JCLREC TO PRTREC. *MOVE JCL STMT

 MOVE ' ' TO PRTSEQ. *CLEAR SEQ NUM

 MOVE MEMNAME OF FILEIN TO PRTMEM. *EXTRA INFO

 WRITE DISPLAY FROM WORKAREA. *OUTPUT FORM WORK

 GOTO LOOP. *GET MORE

/*

Purpose:

This sample inputs a PDS file containing JCL members and sends it to the printer. Page ejects occur when member name changes. The PDS could likewise contain documentation or test input members.

Expected results:

The report printed has several parts:.

a)
BENCHR01 COMMAND EDIT LIST

b)
BENCHR08 STATISTICS LIST

c)
DISPLAY sysout with page ejects

Points to observe:

Our processing approach is to read all records for the members prefixed by "LESSON". The "LESSONXX" member records will be skipped. For the remaining members, records will be moved one at a time to a workarea offset one byte for carriage control. A page eject value of "1" will be set whenever a new member is started and the member name will printed on the side for every record.

The output file DISPLAY is defined 8 bytes larger than the input which will accommodate the member name. Workbench's output file size and format are determined by the DCB information on the JCL.

Tutorial conclusion:

This completes your tutorial lessons. We hope you feel comfortable with Workbench's syntax and proc​ess concepts. The user manual contains many samples collected over the past few years. We are always looking for new approaches and solutions so please, send us your samples.

 F-25 Copyright (c) 2000 Systech Software Products, Inc.

